Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops

نویسندگان

  • Ana-Isabel de Castro
  • Montserrat Jurado-Expósito
  • María-Teresa Gómez-Casero
  • Francisca López-Granados
چکیده

In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time Blob-wise Sugar Beets Vs Weeds Classification for Monitoring Fields Using Convolutional Neural Networks

UAVs are becoming an important tool for field monitoring and precision farming. A prerequisite for observing and analyzing fields is the ability to identify crops and weeds from image data. In this paper, we address the problem of detecting the sugar beet plants and weeds in the field based solely on image data. We propose a system that combines vegetation detection and deep learning to obtain ...

متن کامل

Multispectral Imaging, Image-processing and Classification for Agriculture

The prevention and control of weed infestation is a matter of importance in the agricultural domain. American farmers alone annually spend $4 billion to protect $16 billion in crops. This work moves in this direction and aims to classify weeds from crops and then spray the weeds in real-time. Another aim is to find the correlation coefficient between the nitrogen treatment levels of the crops a...

متن کامل

Occurrence of the new invasive insect Contarinia nasturtii (Diptera: Cecidomyiidae) on cruciferous weeds.

Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), a common insect pest in Europe and a new invasive pest in North America, causes severe damage to cruciferous crops. In the United States, C. nasturtii was first reported in western New York in 2004. From 2005 to 2007, field surveys were conducted in western New York to investigate the occurrence of C. nasturtii in weeds that might serve a...

متن کامل

Foliar Disease Detection in the Field Using Optical Sensor Fusion

The objective of this research was to detect and recognize the plant stress caused by disease in the field conditions by combining hyperspectral reflection information between 450 and 900nm and fluorescence imaging. The results can be used to develop a tractor mounted cost-effective optical device for site-specific pesticide application in order to reduce and optimize pesticide use. The work re...

متن کامل

Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012